
Documentation for dynsys.h and dynsys.c
Steven Andrews, © 2003

See the document “LibDoc” for general information about this and other libraries.

typedef struct phpt {
int sp;
float *sa;
int fp;
int fs;
float *fa;
} *phptr;

#define MaxIntPar 10

int ODEeuler(void (*eqm)(float *,float *,float *),float *k,int p,float
*u,float tf,float dt,int (*trackfn)(float,int,float *));
int ODErk4(void (*eqm)(float *,float *,float *),float *k,int p,float
*u,float tf,float dt,int (*trackfn)(float,int,float *));
int ODErkas(void (*eqm)(float *,float *,float *),float *k,int p,float
*u,float tf,float dt,int (*trackfn)(float,int,float *));
void EQMsho(float *u,float *k,float *dudt);
void EQMlorenz(float *u,float *k,float *dudt);

phptr phptalloc(int sp,int fp,int fs);
void phptfree(phptr u);
int phptsave(phptr u,char *fnames,char *fnamef);
phptr phptload(char *fnames,char *fnamef);
int ODEFeuler(void (*eqm)(phptr,void *,phptr),void *k,phptr u,float
*Dt,float intpar[],int (*trackfn)(float,phptr,void *),void *trackptr);
int ODEFrk4(void (*eqm)(phptr,void *,phptr),void *k,phptr u,float
*Dt,float intpar[],int (*trackfn)(float,phptr,void *),void *trackptr);
int ODEFrkas(void (*eqm)(phptr,void *,phptr),void *k,phptr u,float
*Dt,float intpar[],int (*trackfn)(float,phptr,void *),void *trackptr);
void EQMFzero(phptr u,void *k,phptr dudt);
void EQMFsho(phptr u,void *k,phptr dudt);
void EQMFdiff(phptr u,void *k,phptr dudt);
void EQMFwave(phptr u,void *k,phptr dudt);
int TKFticker(float t,phptr u,void *tkptr);
int TKFtimeplot(float t,phptr u,void *tkptr);
int TKFshowfield(float t,phptr u,void *tkptr);

First parts written 1/29/97. Field routines added 6/97; some testing. Slight
additions 1/00.

This library is really two parallel libraries, both of which integrate ordinary
differential equations. Routines without an "F" are designed to work together, and
are for small dimensional phase space (presently set for Pmax=10 dimensions, but
easily enlarged). Routines with an "F", which stands for "field", are designed for
high dimensional phase space, including fields. The latter routines are also a little
more general and a little more careful about being proper and checking for errors.
The data structure struct phpt is only used in the "F" routines. Routines that start
with ODE are differential equation integrators, ones that start with EQM are some

useful equations of motion, and ones starting with TK are for tracking the results of
the integrations.

The notation is largely taken from Stuart and Humphries's Dynamical
Systems and Numerical Analysis while the algorithms are from Numerical Recipes
in C. The code is similar to that in Numerical Recipes, but mine are a little faster
and seem to me to be simpler.

ODEeuler and EDEFeuler use Euler's method of differential equation
integration, which is simple but of low quality. ODErk4 and ODEFrk4 use a fixed
step fourth order Runge-Kutta algorithm, which is much better than Euler's
method. ODErkas and ODEFrkas use a fifth order Runge-Kutta algorithm with
adaptive step sizing. Thus, the last routines take large steps in smooth areas of
phase space and small steps in more difficult regions. Step sizing is supposed to
work such that the error on each step is as high as possible, but no more than that
taken on the first step, for which the step size is supplied by the user.

The non-"F" ODE routines all take in identical arguments. Going through
them in order, pass in a function name for the equations of motion, a vector of
constant parameters (not used by the integrator, but passed on to *eqm), the
dimension of phase space, the initial conditions (u[0..p-1]), the final time, the
time step, and the name of a function to track the results. The *eqm function is
sent a point in phase space, the constant vector k, and an uninitialized array in
which the first time derivatives are to be returned. Note that the time is not sent,
so if it is needed, it needs to be added as another dimension. If the *eqm function
returns a non-zero value, the integration is stopped. If you don't want to watch or
record the results as they are produced, making *trackfn a NULL pointer will tell
the integrator to keep going. Otherwise, *trackfn is sent the time, the dimension
of phase space, and the present point in phase space. It is called after the first
time step, and every step thereafter up to, but not including tf. The tracking
function should return zero for stable operation and a non-zero integer to abort the
integration.

EQMsho is a set of equations of motion for a simple harmonic oscillator. It
requires one constant, w2 (store this in k[0]). The first phase space dimension is
the position, while the second is the velocity. EQMlorenz contains the Lorenz
equations. The phase space dimensions are x, y, and z, while the constant
parameters are s, r, and b.

The "F" routines use the structure struct phpt, pointed to by the type phptr,
to define a point in phase space. The members sp, fp, and fs are, repectively, the
number of scaler dimensions in phase space, the number of field dimensions, and
the size of the fields. The members sa and fa are the actual scaler and field
arrays. sa is indexed from 0 to sp-1, while fa is indexed with columns 0 to fp-1
to identify the field and with rows from 0 to fs-1 to identify the location in the
field. Thus, for example, u->fa[u->fp*(u->fs-1)+0] is the last element of the
first field of the phptr u. Memory for struct phpts are allocated with phptalloc
and freed with phptfree. The former routine returns a phptr, set up with the sp,
fp, and fs members defined (using the input arguments) and space allocated in the
appropriate arrays. If memory allocation failed, phptalloc returns a 0.

Phase points may be saved to or loaded from disk with the routines phptsave
and phptload. For both routines, the file names may be sent with the fnames and
fnamef arguments, or, if they are set to NULL, the routines ask the user for file
names. The fnames file is a file of the scalar array and fnamef file is a matrix of
the field elements. phptsave returns 1 if saving was successful, and 0 otherwise.

The arguments to the "F" integrators are similar to those for the other
integrators. Going through them in order, pass in a function name for the
equations of motion, a pointer to the constant parameters for the equations of

motion, the starting point in phase space, a pointer to the total time increment, a
set of parameters for the integrator, the name of a function to track results, and a
pointer to any information needed by the tracking function. As above, the *eqm
function is sent a point in phase space, the pointer to the constant parameters, and
an uninitiallized phptr in which the gradient is to be returned. The constant
parameters for the equations of motion, pointed to by k, may be an array of
numbers, a struct phpt, or whatever other data type is expected by the equations
of motion. The parameters to the integrator could be numerous in principal, but in
fact all of the routines written so far only look at the first element, intpar[0], to
get the integration step size (or the initial step size for ODEFrkas). The constant
MaxIntPar sets the maximum required size of the intpar array. Making *trackfn
a NULL pointer tells the integrators to continue until they finish. Otherwise, they
call *trackfn after each step, with the time, the present point in phase space, and a
pointer to any information for the tracking function. Again, this last pointer is
completely general. The tracking function is called after one time step, and then
each time step thereafter, up to, but not including, Dt. If an integrator is
interupted before it finishes, it returns the value 1; otherwise it returns 0.
Regardless of how it terminates, the actual time integrated is returned as *Dt and
the phase space point for that time is returned in u.

EQMFzero requires no constant parameters and returns a zero gradient
everywhere. EQMFsho contains the equations of motion for a simple harmonic
oscillator, inputting w2 in k[0] (cast to a float). EQMFdiff contains the equations
of motion for diffusion in the first field (u->fa[0][j]) with diffusion constant k[0].
EQMFwave contains the wave equation in the first two fields with c2 from k[0].

TKFticker displays the first two scaler parameters as text, TKFtimeplot plots
the first scaler parameter as a function of time, and TKFshowfield plots the first
field, replacing it at each time step.

